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Abstract
In this paper, the q-difference Painlevé equation whose space of initial
conditions is the A

(1)
2 surface is shown to appear as a particular case of a

q-Garnier system, which is a q-difference counter part of monodromy
preserving deformation in the generic situation. As a consequence, the q-
Painlevé equation of A

(1)
2 is written in a Lax formalism.

PACS numbers: 02.30.Gp, 02.30.Hq
Mathematics Subject Classification: 33E17, 34M55, 39A12

1. Introduction

There are many discrete analogues of the Painlevé differential equations. Many of them
were discovered by Ramani and Grammaticos and their co-workers, as equations which pass
through the singularity confinement test [7]. The singularity confinement test is regarded as a
discrete counterpart of the Painlevé test.

A classification of the discrete Painlevé equations with a view of the theory of rational
surfaces is also known [9]. While I prefer to call equations by the types of surfaces because
of the uniqueness of their correspondence, there are many researchers who call them by their
symmetries. Hence we write both of the lists.
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However, Lax forms of some of discrete Painlevé equations have not been obtained yet.
The aim of this paper is to present a Lax pair of q-Painlevé equation associated with the A

(1)
2

surface.
Theory of the Painlevé differential equations has developed through two important aspects.

One is the classification of second-order algebraic ordinary differential equations of normal
type that satisfy the Painlevé property. The other one is a deformation theory of linear
ordinary differential equations. Painlevé and Gambier completed the first one and obtained
the six Painlevé differential equations. On the other hand, Fuchs reached the sixth Painlevé
equation from a completely different problem, deformation theory of linear equations. Going
into detail, we see that the sixth equation appears as the condition that we move the coefficients
of the second-order Fuchsian equation having four regular singularities without changing its
monodromy [2].

This result of Fuchs was generalized afterwards by Garnier and Schlesinger. A result
of Garnier is connected to the deformation theory of the second-order linear equation with
irregular singularities. He obtained the other five Painlevé equations from this consideration
[3]. Schlesinger considered the isomonodromic deformation of an m × m-linear system of
first-order differential equations with regular singularities [11]. At a later time Jimbo, Miwa
and Ueno established a general theory of monodromy preserving deformation for the matrix
system of first-order differential equations with regular and irregular singularities [4, 5]. In
their theory the Painlevé equations are written in the form of a compatibility condition between
a 2 × 2-linear system and an associated deformation system. We call this description ‘Lax
form’ of the Painlevé equations.

We see some merits that we could express the Painlevé equations in their Lax form. First
of all, linear differential equations are easy to be identified with their data of singularities;
in particular, the classification of the Painlevé equations corresponds with coalescence of
singularities of linear differential equations. Besides, particular solutions of Riccati type
appear where the monodromy of linear equations is reducible; we obtain a key for particular
solutions from studies of associated linear equations.

Getting back to the discrete case, we consider these two important aspects. Singularity
confinement, which was presented by Ramani and Grammaticos et al is a discretization of the
Painlevé property. Then, how about the other one, Lax form?

There are three types of discrete Painlevé equations: elliptic-difference, q-difference and
difference. As concerns difference Painlevé equations, in particular D

(1)
l and E

(1)
l types,

they possess the same rational surfaces that the Painlevé differential equations have as their
spaces of initial conditions. Difference equations can be regarded as contiguity relations,
i.e. Bäcklund transformations of the Painlevé differential equations. We can lift up these
relations to associated linear equations; we see them as discrete deformation (Schlesinger
transformation) of linear differential equations and also as coming from compatibilities of two
discrete deformations of linear differential equations.

Although the difference equations of types A
(1)∗∗
0 , A

(1)∗
1 and A

(1)∗
2 do not correspond

to any Painlevé differential equation, the author believes that they should correspond to the
Garnier system or degenerated Garnier systems; they should be written in the framework
of Schlesinger transformations, which is generally studied in Jimbo and Miwa’s paper [5].
Recently, Arinkin and Borodin calculated a Lax pair of difference Painlevé equation of A

(1)∗
2

type, and in fact, they show that the system can be regarded as a discrete deformation of a
linear differential equation, though they did not give explicit form of this linear differential
equation [1].

Therefore, if we want a new deformation equation different from Schlesinger
transformations which appear in the paper of Jimbo and Miwa’s, the author thinks, that
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would be elliptic-difference or q-difference. In the paper of Jimbo and the author, they studied
q-analogue of Fuchs’ result, that is, a deformation theory of linear q-difference equation [6].
Recently, q-analogue of the Garnier system, which is a higher dimensional extension of Fuchs’
result, was also studied [10]. For our information, the Garnier system is equivalent to the
Schelesinger system of rank 2.

Just like the differential case, they are quite natural and general situation; so the q-Painlevé
equation should be included among the q-Garnier system or its degenerations if they could
be written in a 2 × 2-Lax form. However, while the most generic Painlevé equation, the
sixth, coincides with the Garnier system of two dimensional (N = 1), the two-dimensional
q-Garnier system coincides with the q-Painlevé equation of A

(1)
3 type; more generic equations,

A
(1)∗
0 , A

(1)
1 and A

(1)
2 , do not appear.

In this paper, we see that the q-Painlevé equation of A
(1)
2 type appear as a particular case of

the four-dimensional q-Garnier system (N = 2). This construction owes much to calculations
in Arinkin and Borodin’s paper [1]. The same problem for A

(1)∗
0 and A

(1)
1 still remains open.

The text is organized as follows. In the following section we show that the q-Painlevé
equation of A

(1)
2 type appear as a particular case of the four-dimensional q-Garnier system; we

calculate the Lax pair explicitly in the final section.

2. The q-Painlevé equation as a particular case of the q-Garnier system with N = 2

The Garnier system is a multi-variable extension of the sixth Painlevé differential equation; we
can identify it with the Schlesinger system with rank 2. We studied a q-analogue of the Garnier
system in the previous paper [10]. It arises as the condition for preserving the connection
matrix of linear q-difference equations. In this section, we would show that the q-Painlevé
equation of type A

(1)
2 appear as a particular case for the q-Garnier system of four dimension

(N = 2).
In the case that N = 2, we go further in detail. We can express the q-Garnier system as

the dynamical system(
y1, y2, y3, z1, z2, z3; a1, a2, a3, a4, a5, a6

κ1, κ2, θ1, θ2

)
�→

(
ȳ1, ȳ2, ȳ3, z̄1, z̄2, z̄3; a1, a2, a3, a4, qa5, qa6

κ1, κ2, qθ1, qθ2

)
,

where the parameters satisfy the following relation:

κ1κ2

6∏
i=1

ai = θ1θ2.

Now z̄n and ȳn are determined by equations

zn

z5z6

(
zn − z5

an − a5
− zn − z6

an − a6

)
=

(
1 − (1 − qκ1/κ2)(a5 − a6)

z5 − z6

) (
zn − z5

an − a5

1

z5
− zn − z6

an − a6

1

z6

)
,

(2.1)

yn

(
1 − (1 − qκ1/κ2)(a5 − a6)

z5 − z6

)
= −yn

(an − qa5)(an − qa6)

(z5 − z6)2

(
zn − z5

an − a5
− zn − z6

an − a6

)
×

(
wn + z5

an − qa5
− wn + z6

an − qa6

)
, (n = 1, 2, 3). (2.2)

Here

zj =
κ2 +

∑3
n=1

ynzn

�′(an)(aj −an)∑3
n=1

yn

�′(an)(aj −an)

, wj = κ2

κ1

κ1 +
∑3

n=1
ynwn

�′(an)(aj −an)∑3
n=1

yn

�′(an)(aj −an)

, (j = 4, 5, 6), (2.3)
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where �(x) = (x − a1)(x − a2)(x − a3) and wn(n = 1, 2, 3) is the solution of equation
z4−z1
a4−a1

z4−z2
a4−a2

z4−z3
a4−a3

z5−z1
a5−a1

z5−z2
a5−a2

z5−z3
a5−a3

z6−z1
a6−a1

z6−z2
a6−a2

z6−z3
a6−a3




y1w1

(a1−a2)(a1−a3)

y2w2

(a2−a3)(a2−a1)

y3w3

(a3−a1)(a3−a2)

 =

z4

z5

z6

 . (2.4)

Although it seems to be six dimensional, it is essentially a four-dimensional dynamical
system because we have two integrals

y1

(a1 − a2)(a1 − a3)
+

y2

(a2 − a3)(a2 − a1)
+

y3

(a3 − a1)(a3 − a2)
= κ2, (2.5)

(w1 + z1)y1

(a1 − a2)(a1 − a3)a1
+

(w2 + z2)y2

(a2 − a3)(a2 − a1)a2
+

(w3 + z3)y3

(a3 − a1)(a3 − a2)a3
= κ1 + κ2 +

θ1 + θ2

a1a2a3
.

(2.6)

Remark 2.1. The q-Garnier system can be equivalently rewritten as

zn

(
zn − z5

an − a5
− zn − z6

an − a6

)
+

(
zn − z5

an − a5
w5 − zn − z6

an − a6
w6

)
= 0, (2.7)

ȳnw̄5

ynz6
= (an − qa5)(an − qa6)

(z5 − z6)2

(
zn − z5

an − a5
− zn − z6

an − a6

)(
wn + z5

an − qa5
− wn + z6

an − qa6

)
,

(n = 1, 2, 3). (2.8)

Inversely the q-Garnier system is derived from equations (2.7)–(2.8) and equation (2.5). Here
we used equations

w5

z6
= w6

z5
= (1 − qκ1/κ2)(a5 − a6)

z5 − z6
− 1,

which is derived from condition (2.5) and (2.7)–(2.8).

In order to obtain the q-Painlevé equation associated with the A
(1)
2 surface, we apply, to

equations (2.7)–(2.8), the following condition instead of equation (2.5):
yi

ai − aj

+
yj

aj − ai

= κ2, i �= j, i, j ∈ {1, 2, 3}. (2.9)

The conditions imply that yn can be parameterized by one variable λ, that is, we can put

yn = κ2(an − λ), n = 1, 2, 3. (2.10)

The other variables, zn(n = 1, 2, 3), with condition (2.6), can be parameterized by two
variables. When we put

µ = −
(

1 +
3∑

n=1

zn

�′(an)

)
y1y2y3

κ3
2

, (2.11)

γ =
(

3∑
n=1

zn

�′(an)

)
λ − a1 − a2 − a3 +

3∑
n=1

anzn

�′(an)
, (2.12)

then zn is expressed as follows:

zn = a2
n + (γ + λ)an + δ +

µ

an − λ
, (2.13)
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where

δ = 1

κ1 − κ2

[
κ1(2λ2 − σ1λ + σ2 + γ (γ + σ1)) − 1

λ
(κ1µ̃ + κ2µ − θ1 − θ2)

]
,

µ̃ = 1

µ

6∏
i=1

(λ − ai), σ1 =
6∑

i=1

ai, σ2 =
∑
i<j

aiaj .

(2.14)

Conditions (2.9) are invariant under the time evolution of the q-Garnier system when the
following condition is satisfied:

qκ1 = κ2. (2.15)

Theorem 2.1. The dynamical system, (2.7)–(2.8), with conditions, (2.6), (2.9) and (2.15), can
be rewritten by the following form:(

λ, ν, γ ; a1, a2, a3, a4, a5, a6

κ2, θ1, θ2

)
�→

(
λ̄, ν̄, γ̄ ; a1, a2, a3, a4, qa5, qa6

κ2, qθ1, qθ2

)
,

(λ − ν)(λ − ν) = (λ − a1)(λ − a2)(λ − a3)(λ − a4)

(λ − a5)(λ − a6)
,

(2.16)

(
1 − ν

λ̄

) (
1 − ν

λ

)
= a5a6

q

(ν − a1)(ν − a2)(ν − a3)(ν − a4)(
a5a6ν + θ1

κ2

)(
a5a6ν + θ2

κ2

) , (2.17)

a5a6λλ̄(a1 + a2 + a3 + a4 + γ̄ − ν)(a5 + a6 + γ + ν) + q(a5a6ν + θ1/κ2)(a5a6ν + θ2/κ2) = 0.

(2.18)

Remark 2.2. The q-Painlevé equation of type A
(1)
2 can be expressed as a dynamical system

(λ, ν) �→ (λ̄, ν̄), where λ̄ and ν̄ are determined by equations (2.16)–(2.17). Note that the two
equations do not contain the variable γ .

This q-difference system were found by Grammaticos and Ramani and their co-workers
as in the case of many other discrete Painlevé equations (cf [8]). They call it the asymmetric
q-PV equation.

It may be difficult to grasp the meaning of calculus described in this section. Because
the q-Garnier system is derived from the Lax pair, it is getting easier to understand by seeing
the corresponding conditions on the linear equations with respect to each of these conditions.
In the following section we introduce a view of deformation theory of linear q-difference
equations.

3. The Lax pair

Consider a 2 × 2 matrix system with polynomial coefficients

Y (qx) = A(x)Y (x). (3.1)

A deformation theory of a linear q-difference equation in generic situation was studied
in the previous papers [6, 10]. In the theory of the monodromy preserving deformation of
Fuchsian equations, an extra parameter t = (tj ) is introduced denoting the position of regular
singular points. In the formulation, in terms of q-difference equations, we put the (discrete)
deformation parameters at zeros of det A(x), the eigenvalues of the leading term, and the
eigenvalues of the constant term.
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The connection preserving deformation of the linear q-difference equation, which is a
discrete counterpart of monodromy preserving deformation, is equivalent to the existence of a
linear deformation equation whose coefficients are rational in x. We express the deformation
equation in the form

Y (x) = B(x)Y (x), (3.2)

and can express the q-Schlesinger equation in the form

A(x)B(x) = B(qx)A(x) (3.3)

by the compatibility of the deformation equation and the original linear q-difference equation.
Here the bar represents a discrete time evolution.

We now take A(x) to be of the form

A(x) = A0 + A1x + A2x
2 + A3x

3, (3.4)

A3 =
(

κ1 0
0 κ2

)
, A0(t) has eigenvalues θ1, θ2, (3.5)

det A(x) = κ1κ2

6∏
i=1

(x − ai). (3.6)

Clearly we have

κ1κ2

6∏
i=1

ai = θ1θ2. (3.7)

Define yi, zi and wi (i = 1, 2, . . . , 6) by

A(ai) = yi

(
1

w−1zi

)
(wi w) (i = 1, 2, . . . , 6). (3.8)

(Note that det A(ai) = 0.) Then there are 18 parameters and a variable of gauge freedom,
w. They are redundant. The variables, z4, z5, z6 and wi (i = 1, 2, . . . , 6), are determined by
relations (2.3) and (2.4). Moreover, equation (2.6) is also satisfied.

Condition (2.9) is equivalent to the condition that the (1, 2) element of the matrix, A(x),
is a polynomial of degree 1 in x. That is, when we write the coefficient matrix as

A(x) =
(

κ1W(x) κ2wL(x)

κ1w
−1X(x) κ2Z(x)

)
,

then L(x) is written by variable, λ, as L(x) = x − λ.
Besides, when we put Z(x) = L(x)

(
x2 + (γ + λ)x + δ + µ

L(x)

)
, variables, µ, γ and δ, are

determined by equations (2.11), (2.12) and (2.14).
Here we consider a deformation of this linear q-difference system. We look at the

condition that L(x) remains of degree 1 under the deformation of A(x), which is determined
by equation (3.3).

Proposition 3.1. The (1, 2) element, L(x), remains of degree 1 under the deformation, if
qκ1 = κ2.

Theorem 3.2. The q-Schlesinger equation, (3.3), satisfying condition of parameters, qκ1 = κ2,
has a particular solution which is written by the form of (2.16)–(2.18) with the gauge satisfying

w̄

w
= w̄5 − w̄6

z5 − z6
.
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In particular, the matrix B is written by the terms of elements of A as follows:

B(x) = x(x1 + B◦)
(x − qa5)(x − qa6)

, B(x)−1 = 1 +
B̃◦

x
(3.9)

B◦ = q

( − a6z5−a5z6
z5−z6

w a5−a6
z5−z6

w−1 a5−a6
w̄5−w̄6

w̄5z5 − a6w̄5−a5w̄6
w̄5−w̄6

)
, B̃◦ = (det B◦)(B◦)−1. (3.10)

Proof. The calculation is hard but straightforward. It is essentially same to the generic
q-Garnier system (see [10]). We will see only the proof of the proposition.

From the q-Schlesinger system (3.3), the coefficient matrix is determined as

A(x) = B(qx)A(x)B(x)−1.

Continuing the calculus, we obtain

A(x) = 1

q(x − a5)(x − a6)
(qx1 + B◦)A(x)(x1 + B̃◦)

= 1

q(x − a5)(x − a6)
(qA3x

5 + (qA2 + B◦A3 + qA3B̃◦)x4 + · · ·).

On the other hand, we know that A(x) is of the form (see [10])

A(x) = A3x
3 + A2x

2 + A1x + A0

= 1

q(x − a5)(x − a6)
(qA3x

5 + q(A2 − (a5 + a6)A3)x
4 + · · ·).

Comparing these, we have A2 = A2 + (a5 + a6)A3 + q−1B◦A3 + A3B̃◦. Since (1, 2) elements
of A2 and A3 = A3 are zero, vanishing of (1, 2) element of q−1B◦A3 + A3B̃◦ is sufficient.
The (1, 2) element of q−1B◦A3 + A3B̃◦ is

(κ2 − qκ1)w
a5 − a6

z5 − z6
.

Therefore, if qκ1 = κ2, then L(x) remains of degree 1 in x. �
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Sci. Ecole Norm. Super. 29 1–126

[4] Jimbo M, Miwa T and Ueno K 1981 Monodromy preserving deformation of linear ordinary differential equations
with rational coefficients: part I Physica 2D 306–52

[5] Jimbo M and Miwa T 1981 Monodromy preserving deformation of linear ordinary differential equations with
rational coefficients: part II Physica 2D 407–48

http://www.arxiv.org/abs/math.AG/0411584
http://dx.doi.org/10.1007/BF01449199


12210 H Sakai

[6] Jimbo M and Sakai H 1996 A q-analog of the sixth Painlevé equation Lett. Math. Phys. 38 145–54
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